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Multidimensional nuclear magnetic resonance (NMR) experiments measure spin-spin correlations, which
provide important information about bond connectivities and molecular structure. However, direct observation
of certain kinds of correlations can be very time-consuming due to limitations in sensitivity and resolution.
Covariance NMR derives correlations between spins via the calculation of a (symmetric) covariance matrix,
from which a matrix-square root produces a spectrum with enhanced resolution. Recently, the covariance
concept has been adopted to the reconstruction of nonsymmetric spectra from pairs of 2D spectra that have
a frequency dimension in common. Since the unsymmetric covariance NMR procedure lacks the matrix-
square root step, it does not suppress relay effects and thereby may generate false positive signals due to
chemical shift degeneracy. A generalized covariance formalism is presented here that embeds unsymmetric
covariance processing within the context of the regular covariance transform. It permits the construction of
unsymmetric covariance NMR spectra subjected to arbitrary matrix functions, such as the square root, with
improved spectral properties. This formalism extends the domain of covariance NMR to include the
reconstruction of nonsymmetric NMR spectra at resolutions or sensitivities that are superior to the ones
achievable by direct measurements.

Introduction

Multidimensional nuclear magnetic resonance (NMR) is a
powerful tool for probing molecular connectivity and structure
by displaying magnetization transfer between nuclear spins due
to their magnetic interaction as correlation peaks in a multidi-
mensional spectrum.1 However, multidimensional NMR spectra
with high resolution and sensitivity require the acquisition of a
large number of scans, which is NMR spectrometer time
intensive.2 Establishment of direct correlations between insensi-
tive nuclei, such as 13C and 15N, requires particularly long
measurement times.3

Indirect covariance NMR4 offers a linear algebraic approach
to establish correlations between pairs of heteronuclei that are
coupled to a common set of protons. Formally, the indirect
covariance transform of the N1 × N2 NMR spectrum X produces
the (symmetric) spectrum C ) (XXT)1/2 (where the superscripts
T and 1/2 denote the matrix transpose and matrix-square root,
respectively). Unsymmetric covariance NMR5-8 generates asym-
metric spectra via matrix multiplication of two distinct spectra
that share (at least) one common dimension. An example is the
multiplication of an 13C-1H HSQC9 with a 1H-1H TOCSY10

to correlate all 1H and 13C nuclei in the same spin system. This
reconstructs a 13C-1H HSQC-TOCSY spectrum from two
standard 2D experiments without requiring additional measure-
ment time and thereby yields additional 13C,1H correlations,
which can facilitate chemical shift assignment by linking
unassigned 13C chemical shifts to already assigned 1H and 13C
chemical shifts.6 Hyperdimensional NMR reconstructs high-

dimensional spectra, which are often asymmetric, from lower
dimensional spectra for the purpose of protein resonance
assignment.11,12 COBRA13,14 and Burrow-Owl15 apply linear
algebraic spectral manipulations for the same purpose.

An important property of unsymmetric covariance NMR is
that the sensitivity of the covariance spectrum is limited only
by the sensitivity of the experiments it combines.16 For example,
unsymmetric covariance of an 13C-1H HMBC17 with a 13C-1H
HSQC spectrum establishes carbon-carbon correlations with
the enhanced sensitivity characteristic of an inverse detected
13C-1H heteronuclear spectra rather than that of a direct detected
13C-13C correlation spectrum.4

A key difference between symmetric and unsymmetric
covariance NMR is the applicability of the matrix-square root
transform. The matrix-square root, which minimizes artifacts
due to relay effects and chemical shift (near) degeneracy
(“pseudo-relay effects”)4,18-20 is properly defined only for
symmetric and positive semidefinite covariance spectra, e.g.,
when the product matrix is a regular covariance matrix.

In this paper, a general approach is presented for constructing
a covariance matrix from multiple NMR spectra. Since the
standard covariance transform is recovered as a special case
when identical spectra are used as input, the generalized
covariance matrix formalism reconciles symmetric and unsym-
metric covariance processing. The generalized covariance matrix
is symmetric, which makes it amenable to the extraction of
arbitrary matrix functions, including the matrix-square root and
other matrix powers λ. Depending on the types of spectra that
are correlated, application of the square root suppresses false
positives. It is found that the analysis of the variation of
covariance peak intensity as a function of λ is an effective
indicator for the identification of false positives in unsymmetric
covariance spectra. Covariation of a 13C-1H HMBC with a
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1H-1H TOCSY spectrum to obtain reliable 13C,1H correlations
not detectable in the HMBC experiment demonstrates the utility
of this method. The generalized covariance formalism therefore
expands the power of covariance NMR to the reconstruction of
nonsymmetric spectra.

Theory

Unsymmetric indirect covariance NMR5-8 takes an N1,1 ×
N2 2D spectrum X1 (matrix) and an N1,2 × N2 2D spectrum X2

and “concatenates” them into a single N1,1 × N1,2 spectrum C
via matrix multiplication:

Matrix element Cij of C is a measure of the correlation
between the pair (i,j) of spins belonging to the ith row vector
of X1 and the jth row vector of X2. Such a correlation either
indicates a direct interaction between the two spins, a mutual
correlation to a common third spin, e.g., via spin-diffusion in
NOESY spectra,18,21 or a pseudo-relay effect due to correlations
to different spins with identical chemical shift. In the symmetric
case, i.e. X1 ) X2, extraction of the matrix-square root
effectively reduces both relay and pseudo-relay effects.18,19,22

Generalized (indirect) covariance (GIC) NMR provides a
framework in which unsymmetric covariance spectra are
embedded in symmetric covariance spectra amenable to general
matrix functions. GIC starts out with the construction of a
stacked spectrum from n 2D spectra of dimensions N1i × N2

(i ) 1, ..., n):

A generalized covariance matrix is then defined as

Because of Parseval’s theorem, eq 3 yields (up to a constant
prefactor) the same result irrespective of whether the direct
dimensions of X1, ..., Xn are in the time domain or in the
frequency domain.18 Matrix C is symmetric and semipositive
definite, which permits the straightforward calculation of
arbitrary matrix functions, including matrix roots. For n ) 1,
eq 3 reduces to the indirect covariance NMR spectrum.4 For n
g 2, C contains the unsymmetric covariance matrix given in
eq 1 as an off-diagonal submatrix. For simplicity, the GIC
spectrum from X1 and X2 (n ) 2) is denoted by X1*X2 and,
when raised to the matrix power λ, by [X1*X2]λ.

After application of singular value decomposition (SVD) to
matrix S of eq 2, S ) U ·D ·VT, where U and V are orthogonal
matrices and D is diagonal, eq 3 becomes

For the matrix-square root, λ ) 1/2, it follows C0.5 ) U ·D ·UT

and for general powers

Of practical importance, calculation of a series of spectra with
different powers λ of C only requires a single SVD, which
makes such calculations efficient.

The unsymmetric covariance matrix given by eq 1 constitutes
an off-diagonal submatrix of the generalized covariance matrix
C of eq 3. The same submatrix of Cλ defines the λth power of
the unsymmetric covariance matrix including the matrix-square
root of an unsymmetric covariance matrix.

GIC is applicable to a stack of spectra, X1, ..., Xn, as long as
each combination of covariance spectra X1X1

T, X1X2
T, ..., gives

rise to non-diagonal blocks and thereby expands the block-
diagonal parts stemming from the “auto-covariances” XiXi

T. GIC
can reconstruct any spectrum that factors into individually
measurable NMR experiments. For example, a [13C-1H-
HMBC*1H-1H-TOCSY]λ covariance spectrum reconstructs a
2D 13C-1H HMBC-TOCSY spectrum while [13C-1H-
HMBC*15N-1H-HSQC]λ yields a 2D through-bond 13C-15N
correlation spectrum.23 Experiments probing spin-diffusion,
relay, or multispin correlation effects (NOESY, TOCSY,
HMBC) are particularly suitable for GIC analysis due to the
analogy between the matrix (square) root operation of covariance
NMR and the shortening of the experimental mixing time.18

In symmetric covariance, the matrix-square root minimizes
artifacts due to pseudo-relay effects.18,19,22 Likewise, the square
root of the generalized covariance matrix suppresses artifacts
in submatrices belonging to the unsymmetric covariance spectra.
Hence, the intensities of pseudo-relay correlation peaks are
systematically weakened by the root operation as compared to
the intensities of bona fide signals. Generally, the more rapidly
the covariance cross-peak intensity Cij(λ) increases with λ, the
less likely is that peak to be a valid signal. Hence, the slope of
log [Cij(λ)] as a function of λ serves as a useful metric by
complementing signal intensity alone for assessing the veracity
of the signal for matrix element (i,j).

Equation 5 may be rewritten in terms of matrix elements
(where Dk denotes the kth singular value and Uik the ith
component of the kth singular vector)

Thus the slope of the natural log [Cij(λ)] is

Note that the plot of log [Cij(λ)] vs λ is typically a straight
line (Figure 2) and thus the slope given by eq 7 is constant
over a broad range of λ values.

Materials and Methods

2D 1H-1H-TOCSY10 (90 ms mixing time using MLEV-1724)
and 13C-1H-HMBC spectra17 were recorded at 18.8 T and 298
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K for a mixture of seven common metabolites at natural 13C
abundance (D-carnitine, D-glucose, L-glutamine, L-histidine,
L-lysine, myo-inositol, and shikimic acid) each at a concentration
of 10 mM in D2O. The direct 1H dimension of each spectrum
was acquired with 2048 complex points and a spectral width
of 8013 Hz. The indirect 1H dimension of the TOCSY was
acquired with 1024 complex points and the same spectral width
as the direct dimension. The indirect 13C dimensions of the
HMBC spectrum was acquired with 1024 complex points and
a spectral width of 32 206 Hz, respectively.

Additionally, 2D 1H-1H-TOCSY (50 ms mixing time using
DIPSI-225) and 13C-1H HMBC spectra were also recorded at
298 K using a sample of the MDM2-binding p53 peptide
construct with sequence ETFSDLWKLLPEN, described previ-
ously.26 The spectra were acquired with the same spectral widths
as above but with half the number of complex points along each
dimension, except for the indirect dimension of the TOCSY
having only 256 complex points, and with a spectral width of
44643 Hz in the indirect (13C) dimension of the HMBC
spectrum.

All spectra were recorded on a Bruker AVANCE 800
spectrometer equipped with a cryogenic probe and processed
in NMRPipe.27 For the HMBC spectra, a magnitude spectrum
was calculated after 2D FT.17 All other calculations were
performed in MATLAB.28

Results

To demonstrate the approach, a generalized indirect covari-
ance (GIC) HMCB*TOCSY spectrum for a two-component
mixture was calculated from a simulated 13C-1H HMBC
spectrum (Figure 1A) and 1H-1H TOCSY spectrum (Figure
1B) with sharp lines. The mixture consists of two molecules
represented by two different spin systems: the first has three
linked 13C,1H pairs, X-Y-Z, and the second has two pairs,
U-V. To simulate the effects of overlap, the protons of pairs
Y and U are assigned degenerate chemical shifts. Related models
with different degenerate chemical shifts were explored, but all
gave results similar to those reported here. λ ) 1 gives rise to
a false peak in the generalized indirect covariance spectrum
between CX-HV, as indicated in (Figure 1C).

Figure 2A shows the suppression of the false positive CX-HV

peak (red) achieved by varying the exponent λ in eq 5. This
log-linear plot demonstrates the higher slope (eq 7) associated
with the false positive signal (red) relative to the true signals
(black).

Figure 2B shows the analogous plot for a GIC HMBC*TOCSY
spectrum derived from experimental 13C-1H-HMBC and 1H-1H
TOCSY spectra of a metabolite mixture sample. The false
positive signal, which incorrectly correlates a 13C resonance of
myo-inositol to a 1H resonance of carnitine, exhibits a systemati-
cally stronger λ scaling compared to the true positive signals.
Its intensity in the λ ) 1 covariance matrix lies between the
intensities of two true positive signals, a glucose cross-peak and
a myo-inositol cross-peak, but when λ ) 0.5, its intensity is
only as high as the weaker of the two true signals and the slope
of its intensity buildup as a function of λ is higher than the
slope of the true signals. The higher slope and weaker intensity
at λ ) 0.5 provide a signature that this peak is a false positive.

Figure 3 demonstrates the preferential suppression of artifact
signals via the matrix-square root in two GIC HMBC*TOCSY
covariance spectra calculated from two experimental pairs of
13C-1H-HMBC and 1H-1H TOCSY spectra recorded of the
metabolite mixture (Figure 3A,B) and the p53 peptide (Figure
3C,D). The peak intensity better separates false peaks (red dots)

from true peaks (black dots) in the λ ) 0.5 spectrum than in
the λ ) 1 spectrum (Figure 3A,C and Table 1). However, while
intensity in the λ ) 1 spectrum alone is a relatively poor
indicator of peak veracity, deviations from the trend visible
among the true peaks in Figure 3A,C are indicative of peak
authenticity: peaks lying on the upper left-hand side of the
distribution marked by the ellipse, i.e., peaks for which the
matrix-square root reduces peak intensity by a large amount,
are most likely to be false.

Plotting the slope (eq 7) versus the intensity at λ ) 0.5 also
separates true from false peaks (Figure 3B,D). Peaks character-
ized by especially high slopes relative to their intensity (above
and to the left of the ellipse surrounding most peaks) are most
likely to be false. In fact, plotting the slope versus the intensity
at λ ) 0.5 identifies false peaks more effectively than does
plotting intensity at λ ) 1 versus that at λ ) 0.5.

The selection procedure can be formalized by applying
principal component analysis (PCA) in two dimensions,29 which
in good approximation reproduces the ellipses drawn in Figure
3. The major axis of the ellipse is given by the first principal
component and the minor axis by the second principal compo-
nent. PCA transforms intensity and slope into a new variable
pair of independent statistics that is a linear combination of the
original pair. The first principal component adjusts peak intensity
using slope information, while the second component combines
intensity and slope information into a measure of peak quality.
Under the assumption that the principal components are
Gaussian distributed, the value for the second principal com-
ponent calculated for a given peak can be transformed into a
p-value that quantifies the probability that this peak is real rather
than an artifact arising from spurious chemical shift degeneracy.

Figure 1. Schematic HMBC (A), TOCSY (B), [HMBC*TOCSY]1 (C),
and [HMBC*TOCSY]0.5 (D) spectra for a model mixture containing
one spin system with three connected 13C-1H pairs, X-Y-Z, and one
spin system consisting of two 13C-1H pairs, U-V, where the carbon/
carbon connectivities are among X-Y, Y-Z, and U-V. Note the
degeneracy in chemical shift for the protons of 13C-1H pairs Y and U,
which leads to false positive (red) signals in the [HMBC*TOCSY]λ)1

spectrum. Application of the matrix-square root in the GIC formalism
eliminates most false positives. The two most intense false positives
(dark red) are not completely suppressed with decreasing λ. They can
be identified as false positives because of their large slope as a function
of λ. The peaks circled in gray are those whose traces are displayed in
Figure 2.
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The following procedure allows one to edit peaks picked from
a GIC-derived spectrum: (i) perform PCA as described above
on (only) the peaks picked in the λ ) 0.5 spectrum and (ii)
reject peaks for which the p-value calculated (as in a one-tailed
test) from the second principal component is less than 5%.
Application of this procedure cuts the false-positive rate
(reported for the λ ) 0.5 spectra in Table 1) in half while only
rejecting one (p53 peptide) and two (metabolite mixture) true
peaks. The peaks plotted in Figure 3 include only those peaks
reported in Table 1 whose line shapes do not qualitatively
change as a function of λ as illustrated in Figure 4. This fig-
ure shows a region of the metabolite mixture GIC
[HMBC*TOCSY]λ spectrum for different λ values. The un-
symmetric covariance spectrum (λ ) 1) displays a noise ridge
(cross-hatched box)16 due to the covariance of a signal arising
from the carnitine methyl groups with noise. This ridge is
suppressed after application of the matrix roots using the GIC
formalism.

The decrease in intensity with decreasing λ for the false
positive is again much more pronounced than for the other
peaks: relative to the other peaks in panel A, peak 3 is quite
strong, whereas it is weak relative to the other peaks in panel
C and negative in panel D. The slope given by eq 7 at λ ) 0.5
for this peak is 52, while a slope of 45 is typical for this data
set. This peak appears in the upper left of Figure 3B (encircled
in red) outside of the ellipse surrounding true peaks. Due to its
high slope and low intensity at λ ) 0.5, this peak can be easily
identified and eliminated, improving the analysis of the GIC
HMBC*TOCSY spectrum.

Application of λ e 0.5 also recovers the splitting present in
the direct dimensions of the HMBC and TOCSY spectra of this
mixture, which is lost by covariation of the direct dimension in
the unsymmetric covariance process. However, the onset of

distortions in line-shape (e.g., peak 2 in Figure 3D) and signal
reduction generally preclude the use of very low λ values (λ e
0.25).

Figure 5 shows a region of the GIC HMBC*TOCSY
spectrum of the p53 peptide. Again, the matrix-square root
suppresses a false positive peak and a ridge, demonstrating the
applicability of generalized covariance to larger systems, such
as peptides. Unlike an experimentally recorded HSQC-TOCSY,
the GIC HMBC*TOCSY exhibits correlations connecting
quaternary and other nonprotonated carbons, such as carbonyl
and carboxyl carbons, as illustrated in Figure 6. Thus, GIC
provides a powerful representation of spectral information for
the resonance assignment of small and large molecules, includ-
ing peptides.

Discussion and Conclusions

Many informative spin correlations are not directly accessible
by experiment by multidimensional NMR due to measurement

Figure 2. Increase of covariance peak intensity with respect to the
exponent (λ) used in transforming the generalized covariance matrix.
(A) Log-linear plot tracking the intensity buildup with increasing λ
for three example traces from the simulated spectra of Figure 1. (B)
Analogous plot for an experimental generalized indirect covariance
(GIC) HMBC*TOCSY spectrum of a metabolite mixture. In panel B,
the black curves belong to myo-inositol (stronger peak) and glucose
(weaker peak). In all panels, black traces with filled circles correspond
to expected signals while red traces with open circles correspond to
false positive signals. Note the characteristically higher slopes of the
false positive traces.

Figure 3. Suppression and identification of false positive signals via
matrix-square root and λ scaling. (A, C) Comparison of intensity with
λ ) 1 and λ ) 0.5 of (unsplit) peaks in covariance [HMBC*TOCSY]λ

spectra of (A) a metabolite mixture and (C) the p53 peptide. (B, D)
Comparison of slope vs intensity at λ ) 0.5. Panels B and D show
data corresponding to the pairs shown in panels A and C, respectively.
Black dots represent data derived from true peaks, while red dots belong
to false peaks. Line (i) demarcates the minimum intensity for which
peaks are picked in the λ ) 0.5 spectrum, while line (ii) demarcates
the minimum intensity for which peaks are picked in the λ ) 1
spectrum. The green ellipses surround the bulk of data to guide the
eye. The red circles enclose (A, B) the false positive peak shown in
Figures 2 and 4 and (C, D) the false positive peak shown in Figure 5.

TABLE 1: Reduction in False Positive Rate via
Square-Root Extraction

metabolite
mixture

p53 (MDM2
binding peptide)a

λ ) 1 λ ) 0.5 λ ) 1 λ ) 0.5

true peaks 107 103 103 101
false peaks 6 2 15 4
false positive rate (%) 5 2 13 4

a Aliphatic/aliphatic 13C-1H peaks.
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and sensitivity considerations. For instance, correlations between
insensitive nuclei can often be observed only indirectly, i.e.,
via correlations between those nuclei via protons. Other spectra,
such as heteronuclear NOESY and TOCSY, which contain
useful information for resonance assignment and structure
determination of complex molecules, are often not collected due
to limited sensitivity and spectrometer time constraints. How-
ever, unsymmetric covariance NMR can reconstruct hetero-
nuclear TOCSY and NOESY spectra from homonuclear
NOESY and TOCSY spectra and common heteronuclear
13C-1H HSQC or HMBC spectra.7

Similarly, the high-dimensional correlation information re-
quired to make chemical shift assignments in polypeptides can

often only be practically measured by a series of lower
dimensional spectra. A typical manual analysis of NMR spectra
establishes higher order correlations via a comparison of strip
plots. Visual assessment of a nonvanishing correlation of peaks
between slices (strip plots) in two NMR spectra links the spin-
systems associated with the strip plots being compared. Auto-
mated analysis methods, particularly those for protein backbone
assignment,30-37 often work with peak lists rather than with the
underlying spectra. However, such methods generally require
high-quality peak lists that are manually curated. Recently
developed methods such as hyperdimensional NMR,11,12

COBRA,13 and Burrow-Owl15 use unsymmetric covariance5,7

to automate the traditional manual approach of establishing spin
correlations via comparison of strip plots, prior to peak picking.
However, the application of such methods can confound
downstream analysis due to the presence of spurious correlations
between strip plots caused by (near-)degenerate chemical shifts
and therefore may benefit from the generalized indirect cova-
riance approach presented here. GIC establishes correlations
between spectra rather than peak lists and thereby “delays” the
otherwise iterative and sometimes difficult process of peak
picking until true peaks become self-evident.

The GIC formalism generalizes the use of the matrix-square
root for the suppression of relay effects and pseudo-relay effects,
originally demonstrated for symmetric covariance NMR
spectra,18,19 to unsymmetric covariance spectra.6 Previous work
in covariance reconstruction of unsymmetric spectra compared
unsymmetric and indirect covariance results in order to identify
artifacts in each.20 The generalized covariance matrix (eq 3)
presented here computes both unsymmetric and symmetric
covariance spectra in the same step. Furthermore, the GIC
formalism allows for the extraction of multiple roots in a single
covariance calculation. For the examples given here, extraction
of the square root via the generalized covariance matrix reduces

Figure 4. Spectral region of [HMBC*TOCSY]λ spectrum of a
metabolite mixture with (A) λ ) 1, (B) λ ) 0.75, (C) λ ) 0.5, (D) λ
) 0.25. Black contours indicate positive signals, and red contours,
negative signals. The cross-hatched region indicates a noise ridge, which
is suppressed by the matrix power of λ e 0.5. Decreasing the value of
λ also effectively suppresses peak 3, an artifact due to chemical shift
near-degeneracy (pseudo-relay) between myo-inositol and carnitine 1H
resonances. Peaks 1 and 2 arise from myo-inositol, while peaks 4 and
5 arise from the geminal protons attached to C6 in the cyclohexene
ring of shikimic acid. Their distorted line-shapes, particularly pro-
nounced with λ ) 0.25 (C, D) reflect J-splittings in the underlying
HMBC and TOCSY spectra, corresponding to those observed in the
1D 1H spectrum of shikimic acid available via the Biological Magnetic
Resonance Bank.38

Figure 5. Selected region of the generalized indirect covariance
[HMBC*TOCSY]λ spectrum of the p53 peptide calculated using (A) λ
) 1 and (B) λ ) 0.5. Black contours indicate positive signals, and red
contours indicate negative signals. Peaks 1, 2, and 3 are Phe3
(CB-HA), Lys8 (CE-HA), and Leu10 (CB-HA), respectively. Peak 4
is a pseudo-relay artifact caused by accidental near-degeneracy that is
suppressed by the matrix-square root, which also eliminates the
horizontal ridge in panel A.

Figure 6. Novel long-range carbonyl-proton and carboxyl-proton
correlations of p53 peptide derived from GIC [HMBC*TOCSY]1/2.
Cross-peaks initially present in the 13C-1H-HMBC spectrum are
depicted by black contours. Peaks arising from covariance of the HMBC
with the 1H-1H TOCSY spectrum are colored in red. The assignments
of the peaks are as follows: (1) Glu12 (C′-HB2), (2) Glu12 (C′-HB3),
(3) Glu1 (C′-HB2), (4) Glu1 (C′-HB3), (5) Leu9 (C′-HB2), (6) Pro11
(C′-HG3), (7) Pro11 (C′-HB3), (8) Lys8 (C′-HB2), (9) Lys8 (C′-HG2),
(10) Leu10 (C′-HG), (11) Leu6 (C′-HG), (12) Glu12 (CD-HB2), (13)
Glu12 (CD-HB3), (14) Glu1 (CD-HB2), and (15) Glu1 (CD-HB3).
While 13C-1H HSQC and HSQC-TOCSY spectra lack carbonyl/
carboxyl-proton cross-peaks, the 13C-1H HMBC spectrum correlates
carbonyl and side-chain carboxyl carbons (such as the δ-carbons of
glutamic acid) with protons via two and three bond correlations. The
inclusion of TOCSY information via GIC processing results in longer-
range correlations, such as those shown here in red.
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the false positive count of a HMBC*TOCSY spectrum by about
a factor of 3. Removal of peaks characterized by weak intensity
following extraction of the square root concomitant with a rapid
intensity buildup with λ further reduces the false positive rate.

The generalized covariance formalism addresses the issue of
false positives in unsymmetric covariance spectra caused by
resonance overlap and extends the applicability of unsymmetric
covariance NMR to systems with an increased number of signals
of greater resonance degeneracy, including complex mixtures,
for example, of metabolites and biological macromolecules, such
as peptides and proteins. By providing a mechanism to identify
false positive correlations, generalized indirect covariance lays
a linear-algebraic foundation for the accurate and sensitive
identification of spin correlations that are distributed over
multiple 2D NMR spectra. The establishment of spin correla-
tions that are not easily experimentally observable via an
automated method analogous to the comparison of strip plots
marks a path toward the development of computer-based
assignment procedures that are as robust as are the most expert
manual analyses of NMR data.
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